
An Evaluation of Recommendation Algorithms for Online Recipe Portals

Christoph Trattner University of Bergen

David Elsweiler
University of Regensburg

Where do I come from?

Research Focus

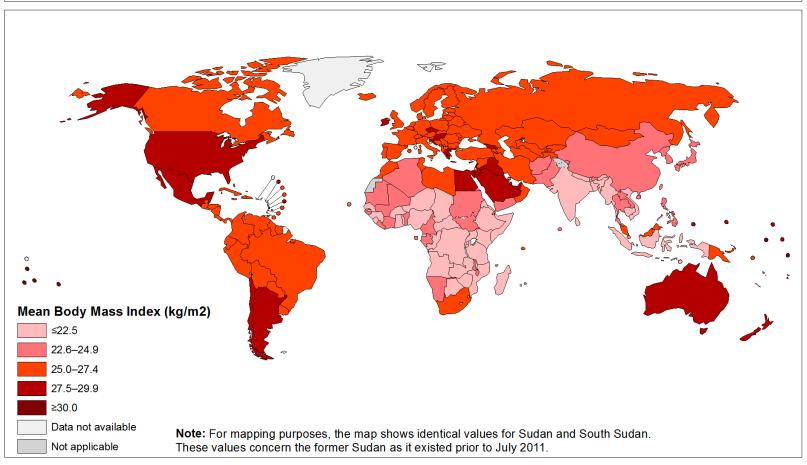
Understand how people behave

Agenda

- Motivation
- Current state-of-the-art in Food RecSys
- Content-based RecSys & Sim. Functions
- Protocol & Dataset
- Results
- Conclusions

Part 1: Motivation

Why is research into Food Recsys Important?


Why is that important?

- Food is one the main concepts that shapes how good we feel and how healthy we are
- According to the WHO, if common lifestyle risk factors, among others diet-related ones, were eliminated, around 80% of cases of heart disease, strokes and type 2 diabetes, and 40% of cancers, could be avoided (European Comission Recommendation C(2010) 2587 final, 2010).

BMI is increasing World Wide

Mean Body Mass Index (kg/m2), ages 18+, 2016 (age standardized estimate)
Male

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement.

Data Source: World Health Organization
Map Production: Information Evidence and Research (IER)
World Health Organization

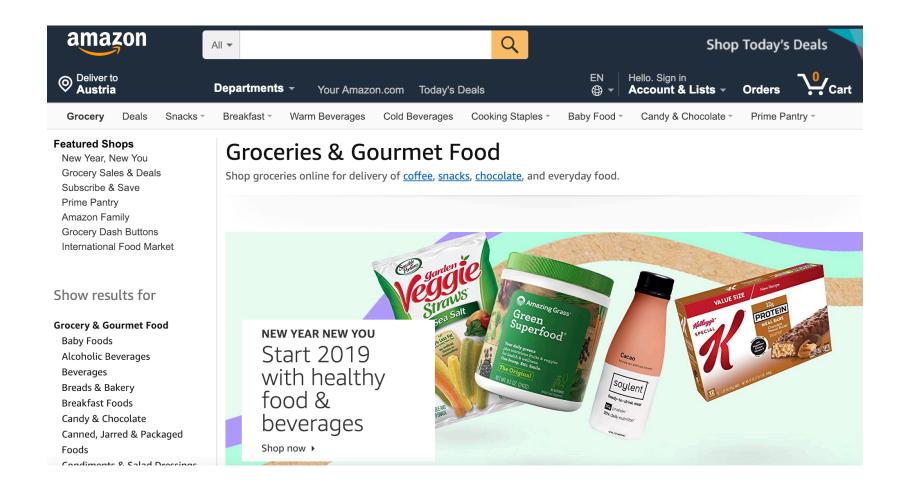
© WHO 2017. All rights reserved.

The approaches I am discussing today are all online food recommender approaches!

Why Online?

Most food interactions nowadays online

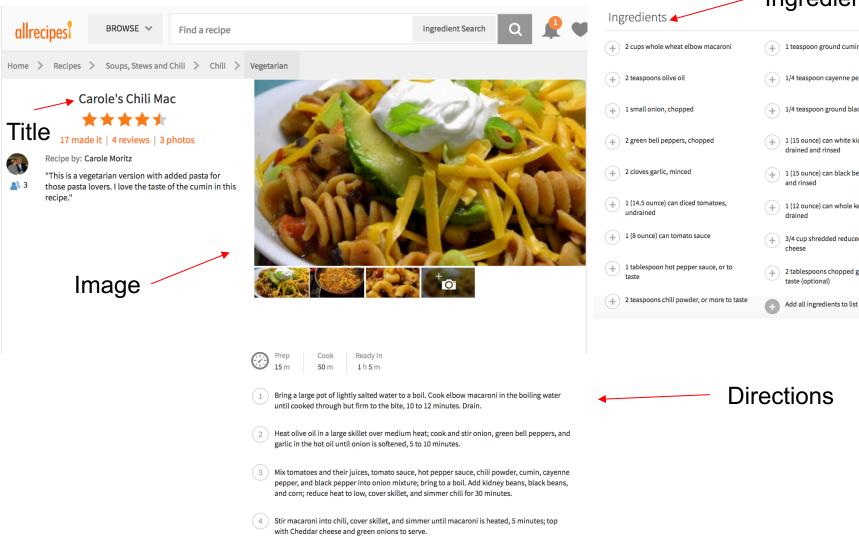
According to recent market research over 50%

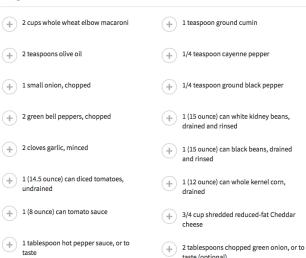


Amazon

Part 2: The Current State-of-the-art in Food RecSys

Food Recommender Systems: Important Contributions, Challenges and Future Research Directions. Trattner, C. and Elsweiler, D. Collaborative Recommendations: Algorithms, Practical Challenges and Applications, World Scientific Publishing Co. Pte. Ltd., 2018


Author(s)	Algorithm(s)	Person- alized	RecSys Type(s)	Feedback	Context/ Content Feature(s)	Dietary Constrains	Target	Dataset	SAX
(Elsweiler, Trattner & Harvey, 2017)	Logistic Random Forrest Naive Bayes	no	Recipes	Ratings Binary	Title Image Ingredients Nutrition Pop. & Appr	no	Single User	Allrecipes	35
(Trattner & Elsweiler, 2017)	LDA WRMF AR SLIM BPR MostPop User- ItemKNN	yes/no	Recipes Meal Plans	Bookmarks Ratings Comments	WHO-FSA health score	no	Single User	Allrecipes	
(Cheng, Rokicki & Herder, 2017)	BPR MostPop	yes/no	Recipes	Ratings	City Size	no	Single User	Kochbar	
(Yang et al., 2017)	Learning to Rank	yes	Recipes	Binary	Image Embeddings	yes	Single User	Yummly	
(Rokicki, Herder, Kuśmierczyk & Trattner, 2016)	UserKNN MostPop	yes/no	Recipes	Ratings	Gender	no	Single User	Kochbar	
(Ge, Elahi, Fernaández-Tobías, Ricci & Massimo, 2015)	MostPop MF CB	yes	Recipes	Ratings Tags	Tags	no	Single User	Wellbeing Diet Book	
(Elsweiler & Harvey, 2015)	SVD-Hybrid	yes	Meal Plans (Set of recipes)	Ratings	Ingredients	yes	Single User	Quizine	
(Sano, Machino, Yada & Suzuki, 2015)	UserKNN SVD Hybrid NL-PCA	yes	Groceries	Purchases	Food Categories	no	Single User	Grocery store data	
(Trevisiol, Chiarandini & Baeza-Yates, 2014)	UserKNN CB	yes	Menus (Set of dishes)	Binary	Text Sentiment	no	Single User	Yelp	
(Elahi, Ge, Ricci, Massimo & Berkovsky, 2014)	MF	yes	Recipes	Ratings Tags	tags	no	Group of Users	Wellbeing Diet Book	
(Harvey et al., 2013)	CB, CF Logistic Reg. SVD-Hybrid	yes	Recipes	Ratings	Ingredients etc.	no	Single User	Quizine	
(Teng, Lin & Adamic, 2012)	SVM	no	Recipes	Ratings	Ingredients Nutrition Cook effort Cook methods	no	Single User	Allrecipes	
(Kuo, Li, Shan & Lee, 2012)	Graph-based CB	yes	Menus (Set of recipes)	Tags	Ingredients	no	Single User	Food	
(El-Dosuky, Rashad, Hamza & El-Bassiouny, 2012)	CB KB	yes	Food items	Query	tags	no	Single User	USDA	
(Freyne, Berkovsky, Baghaei, Kimani & Smith, 2011)	CF	yes	Meal plans (Set of recipes)	Ratings	-	no	Single User	Wellbeing Diet Book	
(Ueta, Iwakami & Ito, 2011)	KB	yes	Recipes	Query	tags	no	Single User	Cookpad	
(van Pinxteren, Geleijnse & Kamsteeg, 2011)	СВ	yes	Recipes	Cooked recipes	Recipe content features	no	Single User	Smulweb	
(Freyne & Berkovsky, 2010)	UserKNN CB Hybrid UserKNN	yes	Recipes	Ratings	Ingredients	no	Single User	Wellbeing Diet Book	9


What types of features can we actually employ for CB in Food RecSys?

Problem

Ingredients

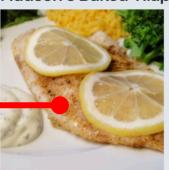
Part 3: How do we calculate similarity between Recipes?

sim(a,b)

Linguine Pasta with Shrimp and Tomatoes

sim(a,b)

sim(a,b)


Ingredients

- 2 tablespoons olive oil
- 3 cloves garlic, minced
- 4 cups diced tomatoes
- 1 cup dry white wine
- 2 tablespoons Latter
- salt and black pepper to taste
- 1 (16 ounce) package linguine pasta
- 1 pound peeled and deveined medium shrimp
- 1 teaspoon Cajun seasoning
- 2 tablespoons olive oil

Directions

Heat 2 tablespoons of olive oil in a large saucepan over medium heat. Ştir in the garlic, cook 2 minutes. Add the tomatoes, and wine. Bring to SIM (3:490) the tilapia fillets with salt, pepper and Cajun seasoning on both simmer and cook 30 minutes, stirring frequently simmered into a sauce, stir in the butter and season with salt and pepper. Fill a large pot with lightly-salted water, bring to a rolling boil, stir in the linguine and return to a boil. Cook the pasta uncovered, stirring occasionally, until the pasta has cooked through but is still firm to the bite,

Hudson's Baked Tilapia with Dill Sauce

Ingredients

- 4 (4 ounce) fillets tilapia salt and pepper to taste
- 1 tablespoon Cajun seasoning, or to taste
- 1 lemon, thinly sliced
- 1/4 cup may naise
- 1/2 cup sour cream
- 1/8 teaspoon garlic powder
- 1 teaspoon fresh lemon juice
- 2 tablespoons chopped fresh dill

Directions

Preheat the oven to 350 degrees F (175 degrees C). Lightly grease a 9x13 inch baking dish.

asoned fillets in a single layer in the baking dish. Place a layer of lemon slices over the fish fillets. I usually use about 2 slices on each piece so that it covers most of the surface of the fish. Bake uncovered for 15 to 20 minutes in the preheated oven, or until fish flakes easily with a fork.

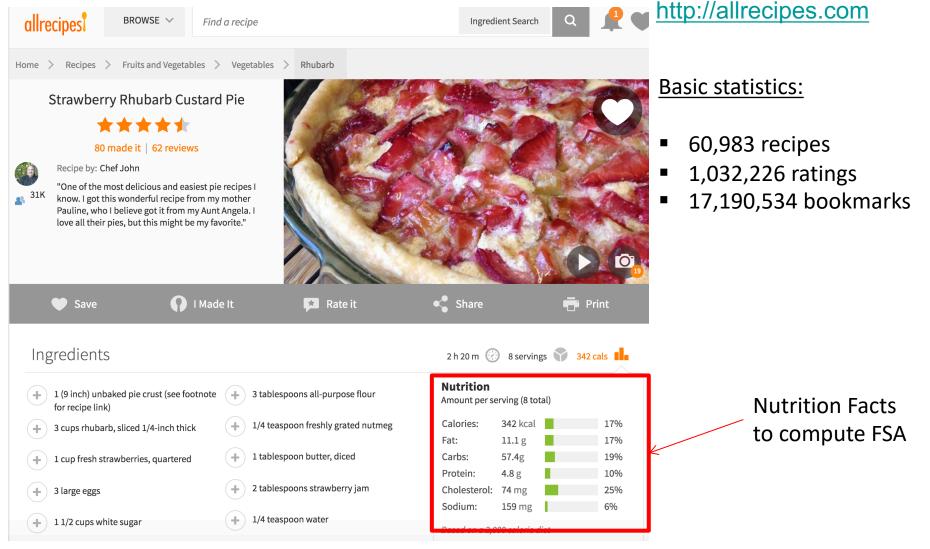
Paper

Trattner, C. and Jannach, D. Learning to Recommend Similar Items from Human Judgements. User Modeling and User-Adapted Interaction Journal. 2019.

Features for Similar Recipe Recommendations

Table 1: Similarity metrics computed based on recipe titles, images, ingredients and cooking directions.

Name	Metric	Explanation
Title:LV	$sim(r_i, r_j) = 1 - dist_{LEV}(r_i, r_j) $	Title Levenshtein distance-based similarity
Title:JW	$sim(r_i, r_j) = 1 - dist_{JW}(r_i, r_j) $	Title Jaro-Winkler distance-based similarity
Title:LCS	$sim(r_i, r_j) = 1 - dist_{LCS}(r_i, r_j) $	Title Least Common Subsequence distance-based similarity
Title:BI	$sim(r_i, r_j) = 1 - dist_{BI}(r_i, r_j) $	Title Bi-gram distance-based similarity
Title:LDA	$sim(r_i, r_j) = \frac{LDA(Title(r_i))) \cdot LDA(Title(r_j))}{\ LDA(Title(r_i))\ \ LDA(Title(r_j))\ }$	Title LDA cosine-based similarity (LDA = LDA vector)
Image:BR	$sim(r_i, r_j) = 1 - BR(r_i) - BR(r_j) $	Image Brightness distance-based similarity
Image:SH	$sim(r_i, r_j) = 1 - SH(r_i) - SH(r_j) $	Image Sharpness distance-based similarity
Image:CO	$sim(r_i, r_j) = 1 - CO(r_i) - CO(r_j) $	Image Contrast distance-based similarity
Image:COL	$sim(r_i, r_j) = 1 - COL(r_i) - COL(r_j) $	Image Colorfulness distance-based similarity
Image:EN	$sim(r_i, r_j) = 1 - EN(r_i) - EN(r_j) $	Image Entropy distance-based similarity
Image:EMB	$sim(r_i, r_j) = \frac{EMB(r_i) \cdot EMB(r_j)}{\ EMB(r_i)\ \ EMB(r_j)\ }$	Image Embedding cosine-based similarity (EMB= image embedding vector)
Ing:COS	$sim(r_i, r_j) = \frac{amount(Ing(r_i)) \cdot amount(Ing(r_j))}{\ amount(Ing(r_i))\ \ amount(Ing(r_j))\ }$	Ingredients Cosine similarity (amount-based weighting in grams per 100g of a meal)
Ing:JACC	$sim(r_i, r_j) = \frac{\{Ing(r_i)\} \cap \{Ing(r_j)\}}{\{Ing(r_i)\} \cup \{Ing(r_i)\}}$	Ingredients Jaccard similarity
Ing:TFIDF	$sim(r_i, r_j) = \frac{TFIDF(Ing(r_i)) \cdot TFIDF(Ing(r_j))}{\ TFIDF(Ing(r_i))\ \ TFIDF(Ing(r_i))\ }$	Ingredients Text-based cosine similarity (TFIDF = TF-IDF weighted vector)
Ing:LDA	$sim(r_i, r_j) = \frac{LDA(Ing(r_i)) \cdot LDA(Ing(r_j))}{\ LDA(Ing(r_i))\ \ LDA(Ing(r_j))\ }$	Ingredients LDA-based cosine similarity (LDA = LDA vector)
Dir:TFIDF	$sim(r_i, r_j) = \frac{TFIDF(Dir(r_i)) \cdot TFIDF(Dir(r_j))}{\ TFIDF(Dir(r_i))\ \ TFIDF(Dir(r_j))\ }$	Cooking Directions Text-based cosine similarity (TFIDF = TF-IDF weighted vector)
Dir:LDA	$sim(r_i, r_j) = \frac{LDA(Dir(r_i)) \cdot LDA(Dir(r_j))}{\ LDA(Dir(r_i))\ \ LDA(Dir(r_j))\ }$	Cooking Directions LDA cosine-based similarity (LDA = LDA vector)



Part 4: Experiment & The Dataset

Offline Evaluation with 10-fold Cross-Validation

LibRec/AUC

Determining the healthiness of recipes

What the colours mean:

means **HIGH**

indicating that the food is high in fat, sugars or salt

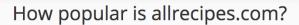
It's fine to eat this food occasionally or as a treat, but think about how often you choose it and how much of it you eat.

means **MEDIUM**making it an **OK** choice

Although going for green is even better!

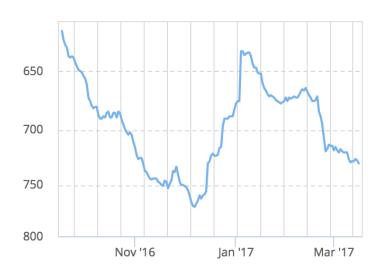
means it's LOW

Which makes it a healthier choice.



FSA food health criteria

Trattner, C. Elsweiler, D. and Simon, H. Estimating the Healthiness of Internet Recipes: A Cross-Sectional Study. Frontiers in Public Health, 2017.


Christoph Trattner

Allrecipes.com popularity

How is this site ranked relative to other sites?

According to Alexa.com

Country	Percent of Visitors	Rank in Country
United States	69.6%	217
[●] Canada	8.0%	219
United Kingdom	2.5%	1,375
Germany	2.0%	2,017
India	1.3%	4,349

Part 5: Results

Table 2: Results of the recommender experiment – collaborative (CF) vs content-based (CB) – in the dense data sample with all users. Best features in each set (CF and CB) are bolded. Top-5 (\uparrow) and Bottom-5 (\downarrow) single content features are also marked.

Method	Algorithm	AUC
CF	BPR	.7094
	WRMF	.6881
	UserKNN	.6962
	ItemKNN	.6909
	MostPopular	.6864
	LDA	.6863
	Title:Levenstein-Distance	.5468 (†)
	Title:Bigram-Distance	.5500 (†)
	Title:LCS-Distance	.5424
	Title:LDA-Text-Cosine	.5353
	Title:Jaro-Winkler-Distance	.5324
	Title:All	.5523
	Image:Cosine-Embeddings	.5322
	Image:Colorfulness-Distance	.5072 (\)
	Image:Contrast-Distance	.5175
	Image:Sharpness-Distance	.5109
	Image:Entropy-Distance	.5080 (\)
CB	Image:Brightness-Distance	.4991 (\)
	Image:All	.5425
	Ingredients:Cosine-Text	.5547
	Ingredients:Cosine-LDA-Text	.5653 (†)
	Ingredients:Jaccard	.5502
	Ingredients:Cosine	.5575
	Ingredients:All	.5718
	Directions:Cosine-LDA-Text	.5606 (†)
	Directions:Cosine-Text	.5210
	Directions:All	.5731
	Ratings:Number-Distance	.4789 (\)
	Ratings:Average-Distance	.4832 (\)
	Ratings:All	.5249
	Health:FSA	.5775 (†)
	CB:All	.5883
	Random	.4989

CF vs CB in Recipe RecSys

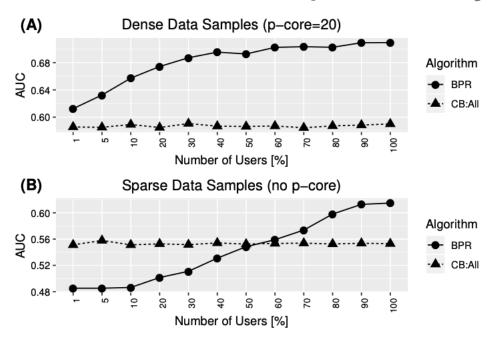


Figure 1: (A) shows the results in the dense data samples (= p-core filtered) where each user has at least 20 item interactions and each item is at least 20-times interacted with, (B) shows the results in the sparse data samples (=no p-core).

Summary

- CF methods consistently outperform CB methods over the full dataset.
- CF requires either a small number of highly active users or over six hundred users, selected randomly to achieve competitive performance.
- There is a useful signal in the CB facets, which would be useful in cold-start situations.
- One of the most robust content features is the nutritional healthiness of the recipe as deined by a measure derived from the United Kingdom Food Standards Agency (FSA).

What is the Future?

Sustainable Food Recommender Systems

What online data say about eating habits. Trattner, C. and Elsweiler, D. NATURE Sustainability, 2019

Thank you!

Prof. Christoph Trattner

Email: trattner.christoph@gmail.com

Web: christophtrattner.com

Twitter: @ctrattner

